
ADVENTURE GAME PLANNING

Adventure games have been a popular source of amusement for years.

This type of game puts you into a created fantasy world where you make

the decisions. For example, you could be a knight in shining armour

attempting to rescue a princess from a tall tower guarded by a fire-

breathing dragon. In adventure games, the player would be told where he

is and what’s going on around him, with people and creatures to

communicate with, and puzzles to solve. A world where your dreams

become reality. The first adventure games were ‘text based’, meaning

that you communicated to the game by typing words and it answered

back by printing a reply on the screen. For example, typing “get the

lamp” will result in the computer replying “You take the lamp” – providing

there was a lamp there in the first place. Playing an adventure game is

like being a character in a film, what happens depends on your choice.

The only problem with these early adventure games was that they

couldn’t understand everything the player typed in. So along came the

graphic adventure games which hands control over to the mouse with

little or no keyboard input. Commands would be clicked on instead of

typed. These types of games include the early Monkey Island and Simon

The Sorcerer series. These games bring your adventure to life as you can

see the world you are in rather than reading a text description.

PLANNING A GAME

Before we can start writing an adventure game, we need to plan it out.

First, we need an idea then built the game around it. Let’s say our game

takes place in a castle. This would be our fantasy game world which is

broken down into several small locations. We would then make a list of

the various locations you would find in a castle like this:

 Throne Room

 Main Hall

 Drawbridge

 Servants Quarters

 Bed Chamber

 Tower

 Dungeon

 Castle Grounds

 Staircase

The next thing to do is connect each location to the nearest one. For

example, the nearest location to the Drawbridge would be the Main Hall

or the Castle Grounds. This is important because you don’t want the

player to enter the castle and find himself stepping into the Dungeon. The

list would now look like this.

 Location 1: Castle Grounds

 Location 2: Drawbridge

 Location 3: Main Hall

 Location 4: Throne location

 Location 5: Dungeon

 Location 6: Servant’s Quarters

 Location 7: Staircase

 Location 8: Bed Chamber

 Location 9: Tower

OBJECTS

An object is something the player can use in his quest. It could be a coat,

a lamp, some food, a bag or anything that can be picked up and moved.

Each object has its normal location number, it could also be in special

locations which are known as Worn, Carried and Not Created. If the main

character is a Barbarian, we could give him a sword and put it in the

carried location, so when the game starts the Barbarian is carrying the

sword. We could also define a magic potion for him and put it in a normal

location waiting for him to find it.

 Sword (Carried Location)

 Potion (Location Five)

 Robe (Worn Location)

If you’ve ever played an adventure game and found something which was

hidden, then you’ve found a “Not Created” object. This is a normal object

without a normal location number. When the player finds the object the

object location variable will become the number of the location the player

is in.

PUZZLES

In adventure games, puzzles are there to give the player a challenge and

make solving his quest harder. For example: finding a way or opening a

chest or getting past a guard dog. Let’s note down some puzzles for the

castle game.

Puzzle: The player has to get past the guard at the drawbridge.

Answer: The player must find a guard’s uniform and wear it.

Puzzle: The player can’t unlock the door of the Bed Chamber.

Answer: The player must break the lock with his sword.

Puzzle: The player can’t get past the guard dog in the Tower.

Answer: The player must find a bone and give it to the dog.

TRAPS

As with puzzles, traps are set up for the player to fall into. If he tried

attacking the guard then the guard would kill him and the game would be

over. Here are some traps for our castle game.

If the player takes the King's Robe the guards will kill him.

If the player drinks the green potion he will die.

If the player tries to walk past the dog it will bite him.

EVENTS

Events are the outcome of things that happen in the game. For example,

if the player had solved the puzzle of the dog, then an event would be

called to put the bone in the Not Created location and the player would be

told that the dog ran off with the bone. The dog and bone would be

removed from the game. Here are some more examples of events

When the player examines the vase, he finds the key.

(Note: put the key in the player's present location).

When the player breaks the lock on the door, he can open it.

(Note: set the DOOR variable to one to indicate it’s open).

When the player drinks the potion, his strength will be restored.

(Note: Set STREN variable to full and put the potion in Not Created

location).

EXITS (CONNECTIONS)

The player needs a way of moving between locations so we have to define

the exits from each location. Exits take on the form of North, South, East,

West, Up, Down, etc. We can also have false exits. This means that the

player can’t move to another location just yet, in other words, it’s blocked

off. Let’s take our castle game. From the drawbridge we have two exits:

one leads to the Main Hall (location 3) and the other leads to the Castle

Grounds (location 1). We could make a note like this.

Drawbridge: (North goes to location 3, South goes to location 1)

So, the drawbridge is location 2 and from there the player can go north to

location 3 or South to location 1. A false exit could be noted down as an

event, so when the player opens the door of the dungeon, he can enter it.

(Note: Connect Main Hall to Dungeon). You can think of this as a Not

Created location being created.

Before we can get these options working, we need to set up the game

data. The best way of doing this is to type it all out as data statements

and then read them into an array. So, let’s put our location descriptions

down as data statements first.

Data ”You are in a cave, an opening is east.”

Data ”You are outside a cave, the entrance lies west.”

To put and hold this in memory we need to define an array using the DIM

command like so.

dim location$(2)

This array will hold two location descriptions, next we need a line to put

the location descriptions in the array so we use the READ command.

for X=1 to 2 : read location$(X) : next x

You can check if the line has done its job by typing ‘print location$(1)’,

the description for location one should appear.

Now let’s define the EXIT data. For this, we need to use a two-dimension

array called MAP.

dim MAP(2,4)

Next, we use a nested loop to read the data into the array.

for X=1 to 2 : for Y=1 to 4 : read MAP(X,Y) : next Y : next X

Finally, the data lines for each location.

data 0,0,0,2

data 0,0,1,0

Here we have a two-dimension array that holds all the exit data for each

location. So, in the above example, the first number is the number of

locations in the game and the second is the number of exits.

To use this example we have to give each exit a number for the game to

refer to like this.

North – Exit One

South – Exit Two

West – Exit Three

East – Exit Four

So, if we wanted exit two (south) to lead to location 3 we would use the

following line of data.

data 0,3,0,0

Here we have four numbers on a line. As the south is exit two then we

replace the second number on the line with the number three so we now

have an exit leading south to location three. Let’s connect a north exit to

location four from this location.

data 4,3,0,0

Each data statement must have four numbers on it. If you didn’t want to

use a certain exit then you would set the exit number to zero.

We also need a routine to allow the player to move from location to

location via the defined exits. Use this line.

if MAP(location,CH)<>0 then location=MAP(location,CH) else print”You

can’t go that way.”

OBJECTS

We can use the same method to store the object examine messages.

dim OBJECT$(2)for X=1 to 2 : read OBJECT$(X) : next X

data ”a small lamp.”,”a sharp sword.”

OBJECT LOCATIONS

Each object has its own location number which could either be a normal

or a special one. First, we set up the array which holds the object location

numbers.

dim OB_LOC(4)

Next, we use READ to put it into the array.

for X=1 to 4 : read OB_LOC(X) : next X

And next, the data line containing the object location numbers.

data 1,5,10,15

So, object 1 at location 1, object 2 at location 5, object 3 at location 10,

and object 4 at location 15

for x=1 to 4

if OB_LOC(X)=location then print”You can see”;OBJECT$(X)

next X

Where the OBJECT$ array holds the description of the objects IE: a small

lamp.

SPECIAL OBJECT LOCATIONS

Normal object locations would be as many as the locations in the

adventure game as they appear in the actual game. But there are special

object locations such as these.

CARRIED - Object is carried by the player

WORN - Object is worn by the player

NOT CREATED - Object does not yet exist in the game

To keep them separate from normal objects we need to give them higher

numbers than the total number of locations in the game.

CARRIED=1000 : WORN=2000 : NC=3000

Each variable can be used to specify which special location the object is

in. So, for example, if we wanted the game to list our carried objects then

it could be checked like this. First, using an array like OB_LOC, we can

put our first object in the CARRIED special location like this.

OB_LOC(1)=CARRIED

We can then add some lines to our game to inform the player what

objects he is carrying……

for X=1 to 10

if OB_LOC(X)=CARRIED then print”You are carrying…..”;OBJECT$(X)

if OB_LOC(X)=WORN then print”You are wearing….”;OBJECT$(X)

next X

I have only covered a few basics here. For full information why not try my

STOS Adventure Creator and STOS Graphic Adventure Creator which you

can download from the Atari ST section. Most of the work is done for you

so you can start knocking out many adventure games.

